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Passive  localization   with  propagation 
models 

Edmund  I   Sullivan 

Abstract: Passive ranging using propagation models can be effected in 
two different ways: forward modeling and direct inversion. The forward- 
modeling method performs an exhaustive recomputation of the field over a 
set of assumed source locations and seeks the best match to the measured 
data. The direct inversion method inverts a set of linear equations consti- 
tuted by the normal mode model. An overview of these two approaches is 
given along with a summary of studies performed to date. This is followed 
by the presentation of a maximum-likelihood algorithm for the direct in- 
version method. A discussion of the merits and weaknesses of each method 
is given. Also, an appendix which discusses some general aspects of the 
inverse problem is included. 

Keywords;    bearings-only   o  deep water   o  environmental acoustics  o 
multipath ranging  o    passive localization  o propagation models o sonar 

o target tracking o   towed array o wavefront curvature 
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1.  Introduction 

One means of obtaining improved processing performance for sonar systems is to 
include environmental information in the processing scheme [1-3]. In spite of the 
potential gains that this would offer hovfever, it has only recently begun to be 
exploited. There are good reasons for this. One is that in most cases of inter- 
est sufficiently accurate environmental information has simply not been available. 
A second reason is that the processing load demanded by such a scheme can be 
prohibitive. One area where these obstacles are slowly being overcome is that of 
passive localization. 

The standard localization techniques, which usually concentrate on range and bear- 
ing, either do not use environmental information or include it in a minimal sense. 
These standard techniques fall into three general categories: bearings-only, wave- 
front curvature and multipath. 

The bearings-only approach consists of making at least two independent bearing 
estimates with a towed array. The range is then computed from these two estimates 
[4]. More general target tracking schemes based on towed array bearing estimates 
have been developed which provide more complete target motion analyses. These 
techniques, however, can be very costly in terms of processing time. The wavefront 
curvature technique provides an estiniate of range as the radius of curvature of the 
wavefront under the assumption that the wave is cylindrical [5]. This can be done 
either with a towed array or at least three independent hydrophones in a horizontal 
line. The quality of the estimate depends strongly on the size of the horizontal 
acoustic aperture at right angles to the direction of propagation. Both the bearings- 
only and the wavefront curvature techiques are severely limited by the horizontal 
acoustic aperture available whereas the third technique, that of multipath ranging, 
depends on vertical aperture or horizontal aperture along the bearing line, since 
it relies on the ability to resolve nmltipath components of the fields [6]. It should 
be pointed out that this technique does depend on environmental information. In 
particular, one must know the water depth and the sound velocity profile (SVP). 
Thus, this technique uses a deep-water propagation model to provide an estimate 
of range. Like the bearings-only technique, it is based on a plane-wave assumption. 
The wavefront curvature technique uses the non-planar character of the wave under 
the assumption that it is a circular wave but uses no environmental information. 

The techniques that we wish to discuss in this report constitute the next evolution- 
ary step in that they include the environmental information in a more complete 
and more consistent manner. They also differ from the above techniques in that 
the studies carried out up to the present are based on shallow-water models. 

-1- 
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2.  Theory 

2.1. BACKGROUND 

If one has a model that describes the acoustic propagation in a given channel, then 
given sufficient information about an acoustic source in this channel and enough 
sufficiently accurate environmental information to provide the proper parameters 
for the model, the acoustic field can be computed. The accuracy of the field as 
computed from the model depends on two things: the goodness of the environmental 
parameters and the fidehty of the model. This basically describes what is known as 
the 'forward' problem. That is, given sufficient information about the source and 
the medium, compute the resulting field. The locahzation techniques constitute an 
'inverse' problem: Given sufficient information concerning the acoustic field and the 
medium, compute the position of the source. This we refer to as an inverse problem 
of the first kind. The inverse problem of the second kind obtains when the field and 
the source are known and the properties of the medium are to be computed. This 
would be of interest in the case of active sonar, where one would be concerned with 
determining certain characteristics of the channel. Here, we are concerned with the 
inverse problem of the first kind. The inverse problem entails certain mathematical 
difficulties that do not appear in the forward problem. First, the solution may not 
be stable to small changes in either the data, the model parameters or the noise. 
Also, the solution may not be tmique. If either or both of these situations occur, 
the problem is said to be ill-posed [7]. (A more complete discussion of the inverse 
problem can be found in the appendix.) The importance of this to the passive 
localization problem is that for each algorithm and model under consideration, a 
careful sensitivity study should be carried out in order to determine the effects of 
measurement and parameter errors on the localization estimate. 

The present efforts in model-based passive localization are focussed on two ap- 
proaches: matched-field processing and direct inversion. These will be discussed in 
turn, beginning with matched-field processing. 

2.2. MATCHED FIELD PROCESSING 

Matched-field processing is best described as the solution to an inverse problem 
by forward modeling. Suppose the range and depth of a point acoustic source are 
to be estimated from the data received on a vertical array of hydrophones. The 
field as predicted by the model for a source location at some arbitrary point on 
a specified range-depth grid is computed. This is then compared to the measured 
field in some manner. For example, the estimator could be the correlation between 
the two fields. This estimator is then computed for all range-depth combinations 
and plotted on a range depth map. The location of the best estimate on this map 
then constitutes the estimate of the true range and depth of the source. 

2- 
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An example of such an estimator is Bucket's detection factor [8]. This can be 
written as 

D{{a}) ^ Pl,i{a})RPM{{a}), (1) 

where R is the covariance matrix of the measured field and PM{{ct}) is the field 
as predicted by the model for source coordinates {a}. For a vertical array of N 
phones, PM({«}) is an A^-dimensional complex vector and R is N x N. (It should 
be noted here that in Bucket's original definition the diagonal of R. is removed.) 
Equation (1) can be thought of as the power output of a beamformer 'steering 
vector' PM{{a})- 

The detection factor is maximum when the modeled field equals the measured field. 
This can be seen as follows. Assuming that the estimate of the covariance matrix 
is obtained by a time average, we have 

D = PIRPM = PII{PP^)PM, (2) 

where we have temporarily dropped the explicit dependence on {Q} for clarity. 
Since PM is deterministic (for the case of a deterministic model), Eq. (2) can be 
written as 

D = {PIPP^PM) = {{PlP){PlP)^). (3) 

By the Schwartz inequality, the inner product PJ^P is maximum when PM = P- 

More recent studies have considered other forms for the detection factor or 'ambi- 
guity function' as it is called by many authors. These efforts are based on replacing 
the 'beamformer', PM, in Eq. (1) with a high-resolution beamformer. In particular, 
attention seems to be focussing on the so-called maximum-likelihood beamformer 
of Capon [9]. This is a beamformer whose weights are such that the spatial spec- 
trum is a maximum-likelihood estimate of the power being received as a function of 
wavenumber (angle) if the noise-only covariance matrix is known [10]. It is equiva- 
lent to the beamformer that obtains if the power is minimized everywhere except in 
the look direction, which is constrained to be a constant. The resulting beamformer 
weights are given by 

Pl[{a})R-^PM{{a}) ^ ^ 

Substituting Eq. (4) into Eq. (1) yields for the ambiguity function 

D{{a}) = — ^- . (5) 
Pl{{a})R-^PM{{a}) ^  ' 

Several investigators have used this form to estimate range and depth [11-14]. The 
results indicate that the lower sidelobes produced by this technique tend to reduce 
the aliasing problem at the cost of some detection performance. 
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There tends to be some confusion in the literature as to just what Eq. (5) con- 
stitutes. That is, since it is based on a maximum-likelihood beamformer, does it 
constitute a maximum-hkelihood estimate of the source position? What Eq. (5) 
does constitute is a maximum-likelihood estimate of the beamformer output power 
for any parameter set {a}. The matched-field technique then, is a graphic or numer- 
ical technique which estimates {a} by finding the maximum of this power estimate. 
It is by no means clear, however, that this criterion delivers a maximum likelihood 
estimate of source position. 

2.3. DIRECT INVERSION TECHNIQUE 

The direct inversion technique is based on the fact that the normal mode model of 
propagation permits a set of linear equations to be written that can be inverted. 
The source position coordinates are then extracted, usually as a second step. The 
technique is also sometimes referred to as a modal filter. 

The normal mode model is expressed as follows: 

N 

P(r,z) = u;Vo^^y ^^^^^W^e-«"'-+^''"'-'''/\ (6) 
x/Swr ^ \/k„ 

where P{r, z) is the acoustic pressure at depth z and range r from a point source at 
depth zo,ui is the circular frequency, po is the water density, Q„ is the loss factor for 
mode n, and fc„ is the horizontal wavenumber which satisfies w^/c^ = k^-\-fn- Here, 
c is the speed of sound and can depend on depth. 7n is the vertical wavenumber. 
Equation (6) is the solution by separation of variables to the Hemholtz form of the 
wave equation. Using a far-field assumption in shallow water, the field is considered 
to be a cylindrical wave. Thus the total field is considered to be a function of r and 
z only.  Upon separation, the equation in z becomes an eigenvalue equation given 

by 
dVn Ul 2 

+ {^-K]4>n = o (7) 

whose eigensolutions are the so-called modal functions. Upon solving the equa- 
tion in r, which yields a Hankel function as the range-dependent part of the total 
solution, and taking the far-field approximation to the Hankel function, Eq. (6) 
obtains. 

A more comprehensive discussion of the normal-mode propagation model can be 
found in [15]. 

For our purposes, knowledge of the absolute value of the field is not necessary, thus 
we normalize Eq. (6), yielding 

N 

n=l 



m,n <t>n{Zm)/y ̂ K 
An = <f>n{zO )e-- 1 

Xn  = Ar.e'" 

Pm =  Mm, nXri' 

SACLANTCEN SR-117 

Suppose now that we wish to determine the position coordinates of the point acous- 
tic source by means of a vertical array of hydrophones. Defining 

~ (9a) 

(9b) 

(9c) 

Eq. (8) becomes 
(10) 

Inversion of Eq. (10) yields the N functions Xn which in principle can be solved 
for the range and depth, since Mm.n and k^ (and also a,,) can be determined from 
knowledge of the depth of the water, the bottom conditions and the sound velocity 
profile; that is, without knowledge of the source coordinates. The problem can be 
generalized somewhat by the addition of noise. Defining a noise vector £„, we have 

P^ = Mm,nXn + £m, 1 < " <  iV, 

l<m<M, (11) 

where M is the number of hydrophones and N is the number of modes supported 
by the acoustic channel. 

Solving Eq. (11) by the method of maximmn-likelihood, the maximum-likelihood 
estimation of Xn is, for the case oi M > N, given by [16] 

X^{M^R-^M)-^M^R-^P, (12) 

where we have dropped the matrix and vector indices for convenience. Equa- 
tion (12) is valid for gaussian noise and is sometimes referred to as the generalized 
least-squares estimator. R is the noise covariance matrix and is given by 

R=:E{se^}. (13) 

Hinich used this approach to develop a technique for the estimation of the depth 
of a point source with a vertical array [17]. This is probably the first time that a 
sophisticated propagation model was used for source localization. 

More recently, Shang, Clay and Wang developed a technique for range estimation 
based on Eq. (10) [18]. Their work is based on the observation that, since the modal 
matrix Mm,n is real, it is only necessary to know the phase of the modal functions 
Xn to determine range. Thus, Eq. (10) is solved directly for the functions Xn- From 
Eq. (9c), one then has 

arg(Xn)-arg(xm) = $n,m, (14) 

-5 
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where the modal phase difference $n,m is given by 

^n,m  ^  {kn - km)r - Ln^m^TT. (15) 

The term L„ ,„27r arises since ^n,m. only contains information concerning the prin- 
cipal values of the phases. 

A third mode is then introduced permitting the calculation of a second modal phase 
difference, say ^n,p, where 

^n,p^ {kn- kp)r - Ln,p2Tr. (16) 

The range is then ehminated between Eqs. (15) and (16) resulting in 

+ J-'n, 
27r      '       \k^-k 

^"'P   _|_    7- (17) 

A search is then made to find all integers Ln,m and Ln,p that satisfy the condition 
that the integer parts and the fractional parts of Eq. (17) are simultaneously equal. 
All of the solutions of Eq. (17) are not valid since the sign of $n,m is not known. 
Shang et al. discuss a method to deal with this problem. 

A natural generalization of the work of Shang et al. is effected as follows. Starting 
from Eq. (12), a solution can be formally written as 

X = VPo-\-Ve = VP, (18) 

where PQ is the noise-free signal and 

V ^{M^R-^M)-^M^R-K (19) 

Equation (19) is taken from Eq. (12). That is, Eq. (18) is the generalized least- 
squares solution to the problem. A 'solution matrix' is then defined by 

S = {XX^), (20) 

where the brackets indicate the time average. For the case of noise uncorrelated 
with the signal, substitution of Eq. (18) into Eq. (20) yields 

S = V{PoP^)V^ +VRV\ (21) 

where we have used Eq. (13). 

This formulation has several advantages associated with it. First, it allows the 
data to be introduced in terms of the covariance matrix, which eliminates the time 
dependence from the problem. Second, it permits numerical studies of various types 

6- 
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of noise to be directly carried out in terms of the noise covariance matrix. Third, 
the argmnents of the elements of the solution matrix directly provide the phase 
differences necessary for the solution. 

Numerical studies of the algorithm of Shang et al. (Eq. (17)) indicate that it is quite 
sensitive to errors in the positions of the hydrophones. A more stable solution can 
be found as follows. From the ijth element of the solution matrix S, one can write 

aTg{Sij) = {ki-kj)r-N7r. (22) 

The term Nir arises from the fact that arg( 5ij) is only the principal value of the 
phase, and the true sign of Xn is not known. 

Solving for r, the result is 

With the definitions 

^^   _  arg(5o)   I ^       ^       _ (23) 
^fcj — fcjj yKi        Kj) 

arg( 5i_,) r 0           "ifeWtJ 
Tn =     ^r.j = TT-^TT (24) 

Eq. (23) becomes 
ri^ = rl + NArij. (25) 

By introducing a third mode, two more solutions for the range can be written, say 
Tik and rjk. If now all the multiple solutions for each of the three range solutions 
are computed out to some maximum range, these solutions can be counted in range 
bins. At the bin containing the correct range one would expect three solutions. 
This can be easily generalized to as many modes as described. For example using 
five modes, 10 pairs can be constructed so that, at the range bin containing the 
correct range 10 solutions should appear. A histogram can then be constructed 
indicating the number of solutions in each range bin. The range corresponding 
to the bin containing the largest number of solutions is the estimated solution. 
Numerical studies have indicated that this algorithm is reasonably stable to errors 
in the hydrophone positions. 

Once the range is deternuned, the depth can be found by using Eqs. (9b), (9c) 
and (12). The procedure is as follows. Equation (9b) is used to eliminate An from 
Eq. (9c). The result is 

X = <^„(2o)e*'" + '"">'. (26) 

Here, Xn is the estimate of Xn taken from Eq. (12). The complex wavenumbers 
kn + icin are known and f is the range estimate.    Thus, the only unknown in 
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Eq. (26) is Zo, the source depth. It can be seen that the solution of Eq. (26) 
requires samples of the modal functions for all values of the desired depth mesh. 
However, the evaluation of the matrix M (see Eq. (9a)) already provides a set of 
samples at the hydrophone depths. Moreover, the SNAP program [19], as a matter 
of course, computes the modal functions for up to 501 depths uniformly distributed 
over the water column. i 

A solution to Eq. (26) by the method of least squares takes the following form: 

N 

^[^n-M^m)]'^  = Jm- (27) 
n=\ 

The quantity Jm can be plotted as a function of m with its minimum providing 
the estimate of source depth. The vector <;6„ is the estimate of <?!>„(ZQ) taken from 
Eq. (26) and (pnizm) is the matrix of computed values of the modal functions. 

N is the number of modes. In practice, the quantities (;6„ and <f)nizm) must be 
normalized, since the absolute value of x is unknown. 

3.   Experimental work 

There have been several successful full-scale localization experiments to date, all 
using the matched-field technique. As for the direct inversion method, there has 
been one successful scale-model experiment. 

Fizell and Wales [12] report a successful localization using a 980 m array in the 
upper part of the water column in water of depth somewhat greater than 2800 m. 
This experiment took place in an arctic environment, where both the array and 
the source were suspended from the ice cover. The 20 Hz source was correctly 
located at a range of 270 km. The signal to noise ratio was quoted as 'high'. The 
propagation model used was a fast field program. 

Feuillade and Kinney [13] report on an experiment performed off Panama City, 
Florida, involving a 450 Hz source at a range of 2.2 km and a depth of 31 m in 
31.5 m of water. The array was approximately 26 m in length. The model used 
was SNAP [19]. The results indicated a biased range estimate (2.42 km) and some 
ambiguity due to multiple peaks of the ambiguity surface. 

Bucker [20] reports a successful localization experiment using a 3 kHz source in 
water with a depth of 66 ft. He reports good localization out to ranges of at least 
four times the water depth. 



SACLANTCEN SR-117 

Finally, Shang et al. [18] report on a scale-model experiment with a 3500 Hz source 
at a range of 1.8 m in air. The acoustic channel was a waveguide formed by two 
parallel plaster plates with a separation of 0.123 m. The experimentally determined 
range, using their direct inversion approach, was 1.798 m. Three modes were used 
in the calculation. The vertical array was actually a single receiver which was used 
as a synthetic array. 

4.  Discussion 

As pointed out in the introduction, from a logical point of view, both the matched- 
field processing method and the direct inversion method are considered inverse 
problems. However, in practice only the direct inversion method is considered as 
an inverse problem. The reason for this is that much of the literature concerning 
inverse problems deals with the mathematical issues that are tinique to the method 
of direct inversion. These issues are, to a large degree, concerned with the so-called 
'ill-posed' problem. A more complete discussion of this is given in the appendix. It 
is of concern to us here since it manifests itself in the method of direct inversion. 
From Eq. (12), we see that the solution requires the inversion of a matrix. Even in 
the case of white noise where the covariance matrix drops out we must invert the 
matrix M^M. When the data do not provide a complete enough sample, this matrix 
becomes singular. In particular, when the array is vertical studies have shown that, 
at least at low frequencies, nearly the complete water column must be sampled to 
stabilize the problem [21, 22]. In the matched-field technique this does not occur. A 
more 'graceful degradation' of the precision of the estimate occurs instead. Another 
advantage of the matched-field method is that one is not limited to the normal- 
mode model. In principle any model of any degree of sophistication can be used. In 
particular, Baggeroer et al. [11] use a full-field model which includes the continuous 
part of the spectrum as well as the modal solution [23]. The direct inversion method, 
on the other hand, although limited to the range dependent case, allows a direct 
solution to be computed without an exhaustive recomputation of the field. In 
particular, when only the range is desired, the computation consists of a single 
matrix inversion (Eq. (12)) followed by the evaluation of Eq. (23) for all relevant 
values of A'^. The determination of depth however requires a search over source 
depth. Thus a two-dimensional search is replaced by two one-dimensional searches. 
Another possible advantage of the direct inversion method is its performance against 
noise. The matched-field techniques appear to require S/N values as high as 10 dB 
where a study of the S/N performance of the direct inversion method produced 
solutions with S/N ratios as low as -13 dB [22]. 

As pointed out in Subsect. 2.3, the solution of Eq. (12) provides a maximum- 
likelihood solution to the problem for the case of gaussian noise. This can be seen 
as follows.   Equation (12) constitutes a linear problem in the vector x, where x 

-9- 
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is given by Xn = A^e'''^'' (Eq. (9c)). Thus, solution of Eq. (12) provides a direct 
maximum-likelihood estimation of x, which we designate as x- Maximum likeUhood 
estimators possess the property of invariance under parameter transformation [24]. 
This means that if a is the parameter of interest and we have the maximum- 
likelihood estimate of x, designated as x, then 

X = x(a). (28) 

This can be seen from the following argument. Given the appropriate likelihood 
function L{a) (or its logarithm) the estimate of a is the solution of 

dLia) 
^      =0. (29) 

But this can be written as 

do. 

dL      dL dZ 

where Z[a) is a parameter that permits a more convenient solution. As can be seen 
by inspection of Eq. (30), that value of a that satisfies 

dL 

automatically satisfies Eq. (30). Thus, 

Z = Z{a), (32) 

which is equivalent to Eq. (28). Of course, the question of whether one has a global 
maximum or not still remains. 

10- 
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Appendix A 
Inverse problems 

Generally, acoustic signal processing is concerned with both detection and estima- 
tion. Detection is the determination of the existence or non-existence of a signal 
at the receiver whereas estimation is the determination of certain parameters or 
descriptors of the signal, the medium or its contents. Certain estimation problems 
fall into a class of problems commonly referred to as 'inverse problems'. This is not 
a well-defined concept and is best defined in terms of its related 'forward problem'. 
The problem under discussion here is the passive ranging problem. The forward 
problem then, would consist of computing the acoustic field radiated from a source 
of known location in a known acoustic channel. The concomitant inverse problem 
in one form is concerned with the determination of the location of the source, based 
on the measiirements of the acoustic field and the known properties of the acoustic 
channel. The inverse problem will, almost always, entail much more computational 
labour than the forward problem. Most linear inverse problems can be written in 
the form of a Fredhobn equation of the first kind: 

f{X) = I K{X,X')9{X')dX', (Al) 

or in its discrete form 
fi - Kijgj. (A2) 

If Eq. (Al) represented an acoustic scattering problem, then K{X,X') would rep- 
resent the acoustic energy scattered from a differential volume dX' or 'source' at 
the point denoted by the vector coordinate X' and g{X) would represent the dis- 
tribution of sources and therefore the distribution of scattering medium. The scat- 
tered field would be given by the function f{X). The forward problem, then, 
would be concerned with determining f{X) given some information about g{X) 
and K{X,X'). An example of an inverse acoustic scattering problem would be 
the determination of g{X) given some information about K{X,X') and measured 
values of f{X). Sometimes K{X,X') is called Green's function and here would 
describe the acoustic field scattered from a point 'source'. 

In the case of the passive localization problems, Eq. (21) reduces to the form of 
Eq. (10) where one makes the identification 

fi = Pi, ' (A3) 

Mij = Kij, (A4) 

9i = Xi- (A5) 

Because of its generality, the inverse problem does not lend itself to a formal struc- 
ture in the same sense as do detection and estimation. It is probably more realistic 
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to consider it as a collection of techniques. There are, however, some insights that 
can be gleaned from examination of Eq. (Al). First, it is clear that it is generally 
an integral equation problem. Except for rare special cases, solution in closed form 
will not be possible, so that a numerical solution will be called for. If the data are 
in discrete form, it becomes a problem in linear equations. Also, there can arise 
severe mathematical pathologies in the solution of such problems. One of these 
is that the problem can be what mathematicians refer to as ill-posed. This is a 
problem that can be due to noisy data, measurement errors, not enough data, or a 
combination of these. A problem is well posed when a unique solution exists that 
is stable to changes in the data. The problem of nonuniqueness can, in many cases, 
be dealt with by introducing a priori information. 

The stability problem arises when, given the existence of a solution, the solution is 
extremely sensitive to small perturbations in the data. As an example, consider a 
measurement of f{X) denoted by f{Xi). Let this measurement incur an error A/ 
and let /o be the true value. Then, 

/(Xt) =. /o + A/ = y K{Xr,X) [giX) + Ag] dX, (A6) 

fo=   f K{XuX)g{X)dX. .             (A7) 

Subtracting Eq. (A7) from Eq. (A6) yields 

Af=  f K{XuX)AgdX. (A8) 

It can be seen from Eq. (A8) that A/ can be thought of as a weighted average of 
Ag where K{Xi,X) is the weight. Thus, one is free to select a function Ag whose 
weighted average is as close to zero as desired, but can produce large errors on 
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